Blocking angiogenesis and tumorigenesis with GFA-116, a synthetic molecule that inhibits binding of vascular endothelial growth factor to its receptor.
نویسندگان
چکیده
A small synthetic library of cyclohexapeptidomimetic calixarenes was prepared to identify disrupters of vascular endothelial growth factor (VEGF) binding to its receptor that inhibits angiogenesis. From this library, we discovered GFA-116, which potently inhibits (125)I-VEGF binding to Flk-1 in Flk-1-overexpressing NIH 3T3 cells and human prostate tumor cells with an IC(50) of 750 nM. This inhibition is highly selective for VEGF in that (125)I- platelet-derived growth factor binding to its receptor is not affected. GFA-116 inhibits VEGF-stimulated Flk-1 tyrosine phosphorylation and subsequent activation of Erk1/2 mitogen-activated protein kinases. Furthermore, epidermal growth factor, platelet-derived growth factor, and fibroblast growth factor-dependent stimulation of Erk1/2 phosphorylation are not affected at concentrations as high as 10 microM. In vitro, GFA-116 inhibits angiogenesis as measured by inhibition of migration and formation of capillary-like structures by human endothelial cells as well as suppression of microvessel outgrowth in rat aortic rings and rat cornea angiogenesis. In vivo, GFA-116 (50 mpk/day) inhibits tumor growth and angiogenesis as measured by CD31 staining of A-549 human lung tumors in nude mice. Furthermore, GFA-116 is also effective at inhibiting tumor growth and metastasis to the lung of B16-F10 melanoma cells injected into immunocompetent mice. Taken together, these results demonstrate that a synthetic molecule capable of disrupting the binding of VEGF to its receptor selectively inhibits VEGF-dependent signaling and suppresses angiogenesis and tumorigenesis.
منابع مشابه
Design of a humanized anti vascular endothelial growth factor nanobody and evaluation of its in vitro function
Objective(s): Nanobodies, the single domain antigen binding fragments of heavy chain-only antibodies occurring naturally in camelid sera, are the smallest intact antigen binding entities. Their minimal size assists in reaching otherwise largely inaccessible regions of antigens. However, their camelid origin raises a possible concern of immunogenicity when used for human therapy. Humanization is...
متن کاملPhysiological role of adenosine and its receptors in tissue hypoxia-induced
It is well known that the metabolic factors play an important role in the regulation of angiogenesis. Increased metabolic activity leads to decreased oxygen levels and causes tissue hypoxia. Hypoxia starts different signals to stimulate angiogenesis and promotes oxygen delivery to tissues. It has been suggested that released adenosine from hypoxic tissues plays a vital role in angiogenesis. ...
متن کاملMolecular Study of Vascular Endothelial Growth Factor Gene in Iranian Patients after Myocardial Infarction
Background: Stimulation of collateral artery growth (arteriogenesis) and/or capillary network growth (angiogenesis) would be beneficial to the patients with myocardial infarction. To understand the central role of vascular endothelial growth factor (VEGF) in biological angiogenesis, we performed molecular analysis of the VEGF gene in patients afflicted with acute myocardial infarction (AMI). Me...
متن کاملHSPG-Binding Peptide Corresponding to the Exon 6a-Encoded Domain of VEGF Inhibits Tumor Growth by Blocking Angiogenesis in Murine Model
Vascular endothelial growth factor VEGF(165) is a critical element for development of the vascular system in physiological and pathological angiogenesis. VEGF isoforms have different affinities for heparan sulphate proteoglycan (HSPG) as well as for VEGF receptors; HSPGs are important regulators in vascular development. Therefore, inhibition of interactions between VEGF and HSPGs may prevent an...
متن کاملQuinazoline derivative compound (11d) as a novel angiogenesis inhibitor inhibiting VEGFR2 and blocking VEGFR2-mediated Akt/mTOR /p70s6k signaling pathway
Objective(s): We previously reported a series of quinazoline derivatives as vascular-targeting anticancer agents. In this study, we investigated the mechanism underlying the anti-angiogenic activity of the quinazoline derivative compound 11d. Materials and Methods: We examined the effects of quinazoline derivative 11d on vascular endothelial growth factor receptor-2 (VEGFR2) activation via VEG...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cancer research
دوره 64 10 شماره
صفحات -
تاریخ انتشار 2004